Convergence Rates for an Optimally Controlled Ginzburg-landau Equation

نویسنده

  • MATTIAS SANDBERG
چکیده

An optimal control problem related to the probability of transition between stable states for a thermally driven Ginzburg-Landau equation is considered. The value function for the optimal control problem with a spatial discretization is shown to converge quadratically to the value function for the original problem. This is done by using that the value functions solve similar Hamilton-Jacobi equations, the equation for the original problem being defined on an infinite dimensional Hilbert space. Time discretization is performed using the Symplectic Euler method. Imposing a reasonable condition this method is shown to be convergent of order one in time, with a constant independent of the spatial discretization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact solutions of the 2D Ginzburg-Landau equation by the first integral method

The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.

متن کامل

Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation

‎In this paper‎, ‎we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-‎dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method‎, homogeneous balance method, extended F-expansion method‎. ‎By ‎using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...

متن کامل

An Equation for the Limit State of a Superconductor with Pinning Sites

We study the limit state of the inhomogeneous Ginzburg-Landau model as the Ginzburg-Landau parameter κ = 1/ →∞, and derive an equation to describe the limit state. We analyze the properties of solutions of the limit equation, and investigate the convergence of (local) minimizers of the Ginzburg-Landau energy with large κ. Our results verify the pinning effect of an inhomogeneous superconductor ...

متن کامل

Diffusive repair for the Ginzburg-Landau equation

We consider the Ginzburg-Landau equation for a complex scalar field in one dimension and show that small phase and amplitude perturbations of a stationary solution repair diffusively to converge to a stationary solution. Our methods explain the range of validity of the phase equation, and the coupling between the “fast” amplitude equation and the “slow” phase equation.

متن کامل

Inviscid Limits of the Complex Ginzburg–Landau Equation

In the inviscid limit the generalized complex Ginzburg–Landau equation reduces to the nonlinear Schrödinger equation. This limit is proved rigorously with H 1 data in the whole space for the Cauchy problem and in the torus with periodic boundary conditions. The results are valid for nonlinearities with an arbitrary growth exponent in the defocusing case and with a subcritical or critical growth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008